TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO]
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Oscilador harmônico monodimensional
Hamiltoniano, energia e autofunções
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático
x
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
. Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
- x
. Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
- x
O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- x
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- x
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .
- x
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Aplicação: moléculas diatômicas
Ver artigo principal: Molécula diatômicaPara estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
- x

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
Equação de Schrödinger Dependente do Tempo (geral)
x
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
Equação de Schrödinger Dependente do Tempo (geral) |
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Absorção molecular
Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado, .
- x
Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado, .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Fótons no vácuo
No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luz, c, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108 m s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.
Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.
No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luz, c, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108 m s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.
Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.
Fótons na matéria
Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.
A relação de dispersão associada para fótons é uma relação entre a frequência, f, e comprimento de onda, λ. ou, equivalentemente, entre sua energia, E, e momento, p. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por
- x
Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.
A relação de dispersão associada para fótons é uma relação entre a frequência, f, e comprimento de onda, λ. ou, equivalentemente, entre sua energia, E, e momento, p. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
As relações quânticas do fóton são:
- e
- x
As relações quânticas do fóton são:
- e
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.
Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.
De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).
Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.
Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]
que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.
Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.
De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).
Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.
Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]
Comentários
Postar um comentário